This is a paragraph.

Seventy-five equivalent statements

In a non-right triangle ABC, let a,b,c be the side-lengths, h_a,h_b,h_c the altitudes, F_a,F_b, F_c the feet of the altitudes from the respective vertices, M_a,M_b,M_c the midpoints of sides BC,CA,AB, E_a,E_b,E_c the Euler points, R the circumradius, O the circumcenter, N the nine-point center, H the orthocenter, O^c the reflection of O over side AB, O^b the reflection of O over side AC, and O^a the reflection of O over side BC. Then the following seventy-five statements are equivalent:

  1. E_c=F_c
  2. AH=b
  3. BH=a
  4. AE_a=\frac{b}{2}
  5. BE_b=\frac{a}{2}
  6. E_aM_c=\frac{a}{2}
  7. E_bM_c=\frac{b}{2}
  8. OO^a=b
  9. OO^b=a
  10. CH=2h_c
  11. h_a=AF_b
  12. h_b=BF_a
  13. AF_c=\frac{b^2}{2R}
  14. BF_c=\frac{a^2}{2R}
  15. \frac{a}{c} =\frac{h_c}{AF_b}
  16. \frac{b}{c}=\frac{h_c}{BF_a}
  17. \frac{a}{b}=\frac{BF_a}{AF_b}
  18. R=\frac{b^2-a^2}{2c}
  19. h_c=R\cos C
  20. \cos A=\frac{b}{\sqrt{a^2+b^2}}
  21. \cos B=-\frac{a}{\sqrt{a^2+b^2}}
  22. \cos C=\frac{2ab}{a^2+b^2}
  23. \sin A=\frac{a}{\sqrt{a^2+b^2}}
  24. \sin B=\frac{b}{\sqrt{a^2+b^2}}
  25. \sin C=\frac{b^2-a^2}{a^2+b^2}
  26. \cos^2 A+\cos^2 B=1
  27. \sin^2 A+\sin^2 B=1
  28. a\cos A+b\cos B=0
  29. \sin A+\cos B=0
  30. \cos A-\sin B=0
  31. 2\cos A\cos B+\cos C=0
  32. 2\sin A\sin B-\cos C=0
  33. \cos A\cos B+\sin A\sin B=0
  34. a\cos A-b\cos B=\sqrt{a^2+b^2}\cos C
  35. \sin A\sin B=\frac{ab}{b^2-a^2}\sin C
  36. \sin^2B-\sin^2A=\sin C
  37. \cos^2A-\cos^2B=\sin C
  38. OH^2=5R^2-c^2
  39. h_a^2+h_b^2=AB^2
  40. \frac{h_a}{a}+\frac{h_b}{b}=\frac{c}{h_c}
  41. a^2+b^2=4R^2
  42. \left(c+2AF_c\right)^2=a^2+b^2 or \left(c+2BF_c\right)^2=a^2+b^2
  43. A-B=\pm 90^{\circ}
  44. (a^2-b^2)^2=(ac)^2+(cb)^2
  45. AH^2+BH^2+CH^2=8R^2-c^2
  46. b=2R\cos A
  47. E_a is the reflection of M_b over side AB
  48. E_b is the reflection of M_a over side AB
  49. \triangle ABH is congruent to \triangle ABC
  50. \triangle OO^aO^b is congruent to \triangle ABC
  51. \triangle CNO is isosceles with CN=NO
  52. \triangle CNH is isosceles with CN=NH
  53. \triangle CHO is right angled at C
  54. N is the circumcenter of \triangle CHO
  55. \triangle O^cOC is right-angled at O
  56. \triangle O^cHC is right-angled at H
  57. quadrilateral O^cOHC is a rectangle
  58. the points O^c,O,C,H are concyclic with OH as diameter
  59. the reflection O^b of O over AC lies internally on AB
  60. the reflection O^a of O over BC lies externally on AB
  61. radius OC is parallel to side AB
  62. F_a is the reflection of F_b over side AB
  63. segment F_aF_b is perpendicular to side AB
  64. the nine-point center lies on AB
  65. the orthic triangle is isosceles with F_aF_c=F_bF_c
  66. the geometric mean theorem holds
  67. the bisector of \angle C has length l, where l^2=\frac{2a^2b^2}{a^2+b^2}
  68. the orthocenter is a reflection of vertex C over side AB
  69. segment HC is tangent to the circumcircle at point C
  70. median CM_c has the same length as the segment HM_c
  71. the bisector M_cO of AB is tangent to the nine-point circle at M_c
  72. AF_aBF_b is a convex kite with diagonals AB and F_aF_b
  73. altitude CF_c is tangent to the nine-point circle at F_c
  74. chord F_cM_c is a diameter of the nine-point circle
  75. segment HF_c is tangent to the nine-point circle at F_c.

It will take quite some time to establish the above equivalence. In this post we select just five.

PROVE that \cos A=\frac{b}{\sqrt{a^2+b^2}} implies \sin A=\frac{a}{\sqrt{a^2+b^2}}.

This follows from the Pythagorean identity \cos^2A+\sin^2A=1.

    \begin{equation*} \begin{split} \sin A&=\sqrt{1-\cos^2A}\\ &=\sqrt{1-\left(\frac{b}{\sqrt{a^2+b^2}}\right)^2}\\ &=\sqrt{\frac{a^2}{a^2+b^2}}\\ &=\frac{a}{\sqrt{a^2+b^2}} \end{split} \end{equation*}

PROVE that \sin A=\frac{a}{\sqrt{a^2+b^2}} implies a^2+b^2=4R^2, where R is the radius of the circumcircle of triangle ABC.

By the extended law of sines, we have that \sin A=\frac{a}{2R}. And so:

    \begin{equation*} \begin{split} \frac{a}{2R}&=\frac{a}{\sqrt{a^2+b^2}}\\ \therefore a^2+b^2&=4R^2 \end{split} \end{equation*}

The converse also holds.

PROVE that a^2+b^2=4R^2 implies \cos B=-\frac{a}{\sqrt{a^2+b^2}} in a non-right triangle ABC.

We use the identity \cos^2B+\sin^2B=1 and the extended sine law \sin B=\frac{b}{2R}:

    \begin{equation*} \begin{split} \cos B&=\pm\sqrt{1-\sin^2B}\\ &=\pm\sqrt{1-\left(\frac{b}{2R}\right)^2}\\ &=\pm\frac{a}{\sqrt{a^2+b^2}}\\ \end{split} \end{equation*}

Since ABC is non-right, take \cos B=-\frac{a}{\sqrt{a^2+b^2}}.

PROVE that \cos B=-\frac{a}{\sqrt{a^2+b^2}} implies a^2+b^2=4R^2.

    \begin{equation*} \begin{split} -\sqrt{1-\sin^2B}&=-\frac{a}{\sqrt{a^2+b^2}}\\ -\sqrt{1-\left(\frac{b}{2R}\right)^2}&-\frac{a}{\sqrt{a^2+b^2}}\\ 1-\left(\frac{b}{2R}\right)^2&=\frac{a^2}{a^2+b^2}\\ \therefore a^2+b^2&=4R^2 \end{split} \end{equation*}

PROVE that A^2+B^2=4r^2 implies \sin A+\cos B=0.

From example 3 we had \cos B=-\frac{a}{\sqrt{a^2+b^2}}. By the converse of example 1 \sin A=\frac{a}{\sqrt{a^2+b^2}}. Thus \sin A+\cos B=0.

Takeaway

In a non-right triangle ABC, let a,b,c be the side-lengths and R the circumradius. Then the following statements are equivalent:

  1. a^2+b^2=4R^2
  2. \cos A=\frac{b}{\sqrt{a^2+b^2}}
  3. \sin A=\frac{a}{\sqrt{a^2+b^2}}
  4. \cos B=-\frac{a}{\sqrt{a^2+b^2}}
  5. \sin A+\cos B=0

More in the task below.

Task

  • (Late seventies) In a non-right triangle ABC, let a,b,c be the side-lengths, h_a,h_b,h_c the altitudes, F_a,F_b, F_c the feet of the altitudes from the respective vertices, M_a,M_b,M_c the midpoints of sides BC,CA,AB, E_a,E_b,E_c the Euler points, R the circumradius, O the circumcenter, N the nine-point center, H the orthocenter, O^c the reflection of O over side AB, O^b the reflection of O over side AC, and O^a the reflection of O over side BC. PROVE that the following seventy-eight statements are equivalent:
    1. E_c=F_c
    2. AH=b
    3. BH=a
    4. AE_a=\frac{b}{2}
    5. BE_b=\frac{a}{2}
    6. E_aM_c=\frac{a}{2}
    7. E_bM_c=\frac{b}{2}
    8. E_aM_b=h_c
    9. E_aF_b=\frac{AH}{2}
    10. E_bF_a=\frac{BH}{2}
    11. OO^a=b
    12. OO^b=a
    13. CH=2h_c
    14. h_a=AF_b
    15. h_b=BF_a
    16. AF_c=\frac{b^2}{2R}
    17. BF_c=\frac{a^2}{2R}
    18. \frac{a}{c} =\frac{h_c}{AF_b}
    19. \frac{b}{c}=\frac{h_c}{BF_a}
    20. \frac{a}{b}=\frac{BF_a}{AF_b}
    21. R=\frac{b^2-a^2}{2c}
    22. h_c=R\cos C
    23. \cos A=\frac{b}{\sqrt{a^2+b^2}}
    24. \cos B=-\frac{a}{\sqrt{a^2+b^2}}
    25. \cos C=\frac{2ab}{a^2+b^2}
    26. \sin A=\frac{a}{\sqrt{a^2+b^2}}
    27. \sin B=\frac{b}{\sqrt{a^2+b^2}}
    28. \sin C=\frac{b^2-a^2}{a^2+b^2}
    29. \cos^2 A+\cos^2 B=1
    30. \sin^2 A+\sin^2 B=1
    31. a\cos A+b\cos B=0
    32. \sin A+\cos B=0
    33. \cos A-\sin B=0
    34. 2\cos A\cos B+\cos C=0
    35. 2\sin A\sin B-\cos C=0
    36. \cos A\cos B+\sin A\sin B=0
    37. a\cos A-b\cos B=\sqrt{a^2+b^2}\cos C
    38. \sin A\sin B=\frac{ab}{b^2-a^2}\sin C
    39. \sin^2B-\sin^2A=\sin C
    40. \cos^2A-\cos^2B=\sin C
    41. OH^2=5R^2-c^2
    42. h_a^2+h_b^2=AB^2
    43. \frac{h_a}{a}+\frac{h_b}{b}=\frac{c}{h_c}
    44. a^2+b^2=4R^2
    45. \left(c+2AF_c\right)^2=a^2+b^2 or \left(c+2BF_c\right)^2=a^2+b^2
    46. A-B=\pm 90^{\circ}
    47. (a^2-b^2)^2=(ac)^2+(cb)^2
    48. AH^2+BH^2+CH^2=8R^2-c^2
    49. b=2R\cos A
    50. E_a is the reflection of M_b over side AB
    51. E_b is the reflection of M_a over side AB
    52. \triangle ABH is congruent to \triangle ABC
    53. \triangle OO^aO^b is congruent to \triangle ABC
    54. \triangle CNO is isosceles with CN=NO
    55. \triangle CNH is isosceles with CN=NH
    56. \triangle CHO is right angled at C
    57. N is the circumcenter of \triangle CHO
    58. \triangle O^cOC is right-angled at O
    59. \triangle O^cHC is right-angled at H
    60. quadrilateral O^cOHC is a rectangle
    61. the points O^c,O,C,H are concyclic with OH as diameter
    62. the reflection O^b of O over AC lies internally on AB
    63. the reflection O^a of O over BC lies externally on AB
    64. radius OC is parallel to side AB
    65. F_a is the reflection of F_b over side AB
    66. segment F_aF_b is perpendicular to side AB
    67. the nine-point center lies on AB
    68. the orthic triangle is isosceles with F_aF_c=F_bF_c
    69. the geometric mean theorem holds
    70. the bisector of \angle C has length l, where l^2=\frac{2a^2b^2}{a^2+b^2}
    71. the orthocenter is a reflection of vertex C over side AB
    72. segment HC is tangent to the circumcircle at point C
    73. median CM_c has the same length as the segment HM_c
    74. the bisector M_cO of AB is tangent to the nine-point circle at M_c
    75. AF_aBF_b is a convex kite with diagonals AB and F_aF_b
    76. altitude CF_c is tangent to the nine-point circle at F_c
    77. chord F_cM_c is a diameter of the nine-point circle
    78. segment HF_c is tangent to the nine-point circle at F_c.
      (Target reached! And surpassed!)
  • (Extra feature) If \triangle ABC satisfies equation (??), PROVE that its nine-point center N divides AB in the ratio |3b^2-a^2|:|b^2-3a^2|.