Due to a little -related issue, we chose to change the format of today’s post. Please click here for the pdf.

## Takeaway

Let and be the feet of the symmedian and the altitude (both) from vertex in triangle . Then the following statements are *equivalent*:

- and divide harmonically
- the identity holds.

## Task

- (Growing membership) In a
*non-right*triangle , let be the side-lengths, the altitudes, the feet of the altitudes from the respective vertices, the midpoints of sides in that order, the Euler points, the circumradius, the circumcenter, the nine-point center, the orthocenter, the reflection of over side , the reflection of over side , the reflection of over side , the symmedian point, the foot of the symmedian from vertex , and the radius of the polar circle. PROVE that the following*eighty-four*statements are*equivalent*:- or
- and divide harmonically
- is the reflection of over side
- is the reflection of over side
- is congruent to
- is congruent to
- is isosceles with
- is isosceles with
- is right angled at
- is the circumcenter of
- is right-angled at
- is right-angled at
- quadrilateral is a rectangle
- the points are concyclic with as diameter
- the reflection of over lies internally on
- the reflection of over lies externally on
- radius is parallel to side
- is the reflection of over side
- segment is perpendicular to side
- the nine-point center lies on
- the orthic triangle is isosceles with
- the geometric mean theorem holds
- the bisector of has length , where
- the orthocenter is a reflection of vertex over side
- segment is tangent to the circumcircle at point
- median has the same length as the segment
- the bisector of is tangent to the nine-point circle at
- is a convex
*kite*with diagonals and - altitude is tangent to the nine-point circle at
- chord is a diameter of the nine-point circle
- segment is tangent to the nine-point circle at .

(Once we hit , we’ll stop this particular exercise.)